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MSM	in	Science
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Number of scientific publications per year

2016: 20,700

2015: 20,500
.
.
.
2000: 4,600



MSM	in	Computational	Chemistry

3



Markov	State	Models	(MSM)

kij (τ ) = P{Xt+τ = j Xt = i}

Regular simulations are Markovian in their full continuous phase spaces.
However any discrete partition of the phase space generates non-
Markovian trajectories.

Widely	used	to	analyze	and	interpret	molecular	trajectories.	The	
final	goal	is	to	infer	long	time	behavior.	

Main	assumption:	The	Markov	property		
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Learning	process	in	MSM
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KTp = p

k̂ij (τ ) = cij / ci

Voelz et	al.,	J.	Am.	Chem.	Soc.,	2010,	132(5),	pp 1526-1528
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Biased	for	kinetics



Protein	Models

Shaw	et	al.,	Science	2011,	334(6055),	pp.	517-520	
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MSM	Analysis:	Standard	Recipe

1. Divide	the	space	in	“Markovian”	regions
2. Estimate	parameters	and	select	a	lag	time
3. Analysis
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Estimating	kinetic	properties
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Mean	First	Passage	Time	(MFPT)



A
B

Mean	First	Passage	Time	(MFPT)

=		The	lag-time	>>	integration	time	step	δt

NOT	MSM
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Mean	First	Passage	Time	(MFPT)

Exact	Value

Our estimation of the kinetic properties are lag-time
dependent while the thermodynamic properties are the same
for every lag-time.

MFPT
estimation

Direct	average,
no	MSM	or	any	other	
model	assumption
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MFPT vs lag-time

True	Value

No	MSM	or	any	other	model	assumption
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MFPT vs lag-time

True	Value

No	MSM	or	any	other	model	assumption
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Data	choices

Full	data	set Reduced	data	set	(<	5%)

Long	MD	Simulations

• Markovian
• Non-Markovian

• Non-Markovian
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Markov	State	Models
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Markov	MFPT	vs lag-time
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Markov	MFPT	vs lag-time
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Markov	MFPT	vs lag-time
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Markov	MFPT	vs lag-time
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MSM	Analysis
• Biased	for	kinetic	properties

– Discretization	error	éMFTP
– Markov	error	êMFPT

True	Value
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Non-Markovian Analysis
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Beyond	Markov:	Color

A
B

Suarez	et	al.,	J.	Chem.	Theory	Comput.,	2014,	10	(7),	pp 2658–2667
Vanden-Eijnden et	al.,	J.	Chem.	Phys.,	2009,	131(4),	pp 44120

α

β

α	=	Last	in	A β	=	Last	in	B
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Beyond	Markov:	Color

Suarez	et	al.,	J.	Chem.	Theory	Comput.,	2014,	10	(7),	pp 2658–2667
Vanden-Eijnden et	al.,	J.	Chem.	Phys.,	2009,	131(4),	pp 44120 22



Beyond	Markov:	Color

Example	with	3	bins.	A is	defined	as	bin	1	and	B as	bin	2	

 K
Tpµ = pµ p

i

eq = pi
α + pi

β

Suárez et	al.,	J.	Chem.	Theory	Comput.,	2014,	10	(7),	pp 2658–2667

2N	x 2N

N	x N
Biased	kinetics

Unbiased	kinetics
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MSM	vs Non-Markovian Analysis

N	x N 2N	x 2N

MFPT MFPT

MSM Non-Markovian
Matrix	
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MSM	vs Non-Markovian Analysis

Direct	MFPT(μs)

MFPT(μs) y	=	xτ =	0.2ns

MSM

Non-Markovian
Matrix	

No	lag-time	
optimization
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• Unbiased	thermodynamics	(populations)

• Unbiased	MFPT	(τ 0)

Non-Markovian Analysis

With	sufficient	history	(color)	information	we	get	

Suarez	et	al.,	J.	Chem.	Theory	Comput.,	2014,	10	(7),	pp 2658–2667 26



Limited	color/history	info

A
B
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Limited	color/history	info

A
B
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Limited	color/history	info

A
B

α
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Other	non-Markovian Analyses

When examining a given time point of the trajectory for estimating a
labeled rate, the α or β label are assigned if possible given the amount
of history. Otherwise the label is assigned stochastically assuming a
Markov behavior.

Markov	+	Color

A
Bi j
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Other	non-Markovian Analyses

When examining a given time point of the trajectory for estimating a
labeled rate, the α or β label are assigned if possible given the amount
of history. Otherwise the label is assigned stochastically assuming a 2nd-
Order Markov model.

2nd Order	Markov	+	Color

A
Bi j
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Non-Markovian Analyses

Not	Lag-time

Chignolin Unfolding
1.1μs

True	Value

Our	prediction
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Non-Markovian Analyses	(Folding)
MSMBuilder States

ChignolinTrp-cage
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Reduced	data	set:

Non-Markovian Analysis
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Reducing	the	amount	of	Data	(<	5%)

Folded

Unfolded

(a) (b)

Unfolded

Folded
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Non-Markovian Analyses
Reduced	data,	MSMBuilder States
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Prediction

Prediction



Non-Markovian Analyses
Reduced	data,	MSMBuilder States
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Prediction

Prediction



Mechanism

Markov	vs	Non-Markovian
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Mechanism
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Mechanism
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A

B
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In	practice	we	have...

A

B

MechanismPath	Ensemble
?

Mechanism
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Mechanism:	Fundamental	Sequence

A

B

MechanismPath	Ensemble
?
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Defining the ”backbone” of the path or fundamental
sequence will allow us to divide the path ensemble in classes
using an equivalence relation. Two paths that share the same
fundamental sequence belong to the same class.

Mechanism:	Fundamental	Sequence

Def.
The fundamental sequence of a path is the most likely
sequence that is consistent with the connectivity of the path.
The likelihood is maximized in both directions.
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Mechanism:	Fundamental	Sequence

Example:	2D	toy	model

E(kT)
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Mechanism:	Fundamental	Sequence

Example:	2D	toy	model
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Mechanism:	MSM	vs	NM
Classification	based	on	the	FS
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Mechanism:	MSM	vs	NM
Classification	based	on	the	FS
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MSM	vs	Lag-time
Classification	based	on	the	FS
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MSM	vs	Lag-time
Classification	based	on	the	FS



Conclusions
• The inclusion of color information in the analysis allows us to

obtain unbiased MFPTs even when the partition of the space
in bins is not optimal.

• In a non-Markovian regime, even with a relatively small
amount of history (available in most of the MD simulations),
we can improve dramatically the estimation of the MFPTs with
respect to regular Markov Models.

• We can drastically reduce the amount of data and still obtain
reasonable results.

• If the history is taken in to account, there is no need of lag-
time “optimization”.

• The NM approach drastically outperforms MSM in the
description of the mechanism/path ensemble.
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Non-Markovian Analyses(Folding)
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Trp-cage Chignolin

Villin NTL9



Non-Markovian Analyses
Reduced	data,	RMSD-based	States
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Prediction

Prediction



Non-Markovian Analyses
Reduced	data,	RMSD-based	States
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Prediction

Prediction



MSM:	Implied	time	scales

Linear	scaleLog	scale
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Beyond	Markov:	Color

Suarez	et	al.,	J.	Chem.	Theory	Comput.,	2014,	10	(7),	pp 2658–2667
Vanden-Eijnden et	al.,	J.	Chem.	Phys.,	2009,	131(4),	pp 44120 57



Trp-cage	Folding:	Symmetric FS
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Chignolin	Folding:	Symmetric FS
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Protein	models
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Implied	time	scales
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Markov	State	Models
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Example:	Methane/Methane

Markov1
Biased

J.	Chem.	Theory	Comput.,	2014,	10	(7),	pp 2658–2667

Confidence	
interval	for	
the	right	
value	(95%)

Non-Markovian

Dissociation	process,	5	independent	WE	simulations.	
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Example:	Ala4

J.	Chem.	Theory	Comput.,	2014,	10	(7),	pp 2658–2667

Non-Markovian (Full	Color)

Non-Markovian (Full	Color)

5	independent	WE	simulations.	
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Ala4

First	passage	time	distribution

Protein	Science	2016,	25,	pp 67-78 67


